Fork-decompositions of ?\iatroids
نویسندگان
چکیده
One of the central problems in matroid theory is Rota's conjecture that, for all prime powers q, the class of GF(q)-representable matroids has a finite set of excluded minors. This conjecture has been settled for q s; 4 but remains open otherwise. Further progress towards this conjecture has been hindered by the fact that, for all q > 5, there are 3-connected GF(q)-representable matroids having arbitrarily many inequivalent GF(q)-representations. This fact refutes a 1988 conjecture of Kahn that 3-connectivity would be strong enough to ensure an absolute bound on the number of such inequivalent representations. This paper introduces fork-connectivity, a new type of self-dual 4-connectivity, which we conjecture is strong enough to guarantee the existence of such a bound but weak enough to allow for an analogue of Seymour's Splitter Theorem. We prove that every fork-connected matroid can be reduced to a vertically 4-connected matroid by a sequence of operations that generalize ti. Y and Y ti. exchanges. It follows from this that the analogue of Kahn's Conjecture holds for fork-connected matroids if and only if it holds for vertically 4-connected matroids. The class of fork-connected matroids includes the class of 3-connected forked matroids. By taking direct sums and 2-sums of matroids in the latter class, we get the class M of forked matroids, which is closed under duality and minors. The class M is a natural subclass of the class of matroids of branch-width at most 3 and includes the matroids of path-width at most 3. We give a constructive characterization of the members of M and prove that M has finitely many excluded minors.
منابع مشابه
Infinite-dimensional versions of the primary, cyclic and Jordan decompositions
The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.
متن کاملFork-decompositions of Matroids
One of the central problems in matroid theory is Rota’s conjecture that, for all prime powers q, the class of GF (q)–representable matroids has a finite set of excluded minors. This conjecture has been settled for q ≤ 4 but remains open otherwise. Further progress towards this conjecture has been hindered by the fact that, for all q > 5, there are 3–connected GF (q)–representable matroids havin...
متن کاملAddendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour
In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...
متن کاملSolving System of Linear Congruence Equations over some Rings by Decompositions of Modules
In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...
متن کاملReliability of Semmes-Weinstein Monofilaments and Tuning Fork on Pressure and Vibration Sensation Measurements in Diabetic Patients
Objectives: Sensory neuropathy is the major cause of ulceration in diabetic patients. Periodical sensory examination is an appropriate method to detect neuropathy and decrease the risk of diabetic foot ulcer. Semmes–Weinstein Monofilaments (SWM) and tuning fork on/off test are widely used to assess pressure and vibration sensitivity. The present study evaluated the inter- and intra-rater reliab...
متن کامل